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This paper presents an innovative image matching method for reliable and dense image matching on
poor textural images, which is the integrated point and edge matching based on the self-adaptive
edge-constrained triangulations. Firstly, several seed points and seed edges are obtained on the stereo
images, and they are used to construct a pair of initial edge-constrained triangulations on the images.
Then, points and edges are matched based on the triangle constraint and other constraints. The newly
matched points and edges are inserted into the triangulations and the constrained triangulations are
updated dynamically along with the matching propagation. The final results will be the final edge-
constrained triangulations generated from the successfully matched points and edges. Experiments using
typical space-borne, airborne, and terrestrial images with poor textures revealed that the integrated point
and edge matching method based on self-adaptive triangulations is able to produce dense and reliable
matching results. Moreover, from the final matched points and edges, 3D points and edges preserving
the physical boundaries of objects can be further derived based on photogrammetric techniques, which
is ideal for further object modeling applications.
� 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Image matching is used for finding corresponding pixels in a
pair of images, which allows 3D reconstruction by triangulation.
It is also an essential and difficult task in digital photogrammetry
and computer vision (Lhuillier and Quan, 2002; Hartley and
Zisserman, 2003; Zhang and Gruen, 2006). Image matching is rela-
tively easy when encountered with good image texture conditions.
However, on relatively poor textural images such as the examples
given in Fig. 1, image matching is a difficult and challenging
problem. Most of the traditional digital photogrammetry systems
require lots of human interactions to remove the errors in the
matching results when dealing with poor textural images (Heipke
et al., 2007).

The poor textural images focused on in this paper mainly refer
to those images (space-borne, airborne, and terrestrial images)
with textural conditions that are difficult for image matching, such
as images with few or homogeneous textures, image textures with
low contrasts, image textures with repetitive patterns, and image
textures suffering from surface discontinuity or occlusion
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problems. Fig. 1 shows typical examples of images with poor tex-
tures. Fig. 1(a and b) is a stereo pair of Mars surface images ac-
quired at crater Victoria, in Meridiani Planum, by the HiRISE
(High Resolution Imaging Science Experiment) camera on board
the Mars Reconnaissance Orbiter in 2006 (McEwen et al., 2007).
The HiRISE imagery has a resolution of 0.3 m/pixel and provides
a tremendous amount of information for Martian topographic
mapping. However, the stereo HiRISE images at the Victoria crater
were extremely unfavorable for automated image matching (Kirk
et al., 2007), with extensive areas that are almost featureless, ex-
tremely steep, and similar textural patterns are distributed in the
sand dunes in the crater bottom area as indicated in Fig. 1(a and
b). Fig. 1(c and d) is a stereo pair of aerial imagery acquired in
the highland area in Lanzhou, China. This area is full of layer pat-
terns. Image matching may fail easily in these areas due to the
repetitive textural patterns, homogeneous and low contrast tex-
tures in local image regions. Fig. 1(e and f) shows a stereo pair of
terrestrial close-range images of a building, in which the repetitive
patterns of the brick structure on the building wall and surface dis-
continuities (e.g., the left side of the regions inside the doors) bring
significant matching ambiguities to image matching.

Reliable image matching received a lot of attention in the past
(Lowe, 1999; Tao et al., 2001; Lhuillier and Quan, 2002; Zhang
emote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
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Fig. 1. Examples of stereo images with poor textures for image matching.
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and Gruen, 2006; Furukawa and Ponce, 2010). Zhu et al. (2005,
2007a, 2010) presented an innovative image matching method,
in which interest points are matched under the constraints of
self-adaptive triangulations. The triangulations are dynamically
updated along with the matching process by inserting the newly
matched points into the triangulations. Because the most distinc-
tive point is always successfully matched first, the dynamic updat-
ing of triangulations is just the process of self-adaptive matching
propagation, which can adapt to the changes in image texture
automatically and will finally produce more reliable matching re-
sults. This method has been used for stereo aerial image matching
(Zhu et al., 2005, 2007a; Wu, 2006) and close-range image match-
ing (Wu et al., 2011; Zhu et al., 2010) and it proved able to produce
reliable matching results. However, the existing methods only take
account of point matching and its performance on poor textural
images (as those illustrated in Fig. 1) is sometimes limited, which
means only sparse matching points can be obtained to insure a
favorable matching reliability. To improve the image matching
performance on poor textural images, an instinctive idea will be
incorporating edge features in an integrated point and edge match-
ing propagation constrained by self-adaptive triangulations. From
the examples of poor textural images in Fig. 1, one can
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immediately notice that edge features can be used to segment the
images, which will certainly be helpful to reduce matching ambi-
guities in the areas around the edges. This is particularly useful
for the homogeneous or repetitive textural patterns (e.g., the sand
dune area in Fig. 1(a), the layer structure in Fig. 1(c), and the brick
wall in Fig. 1(e)) and areas with surface discontinuity problems
(e.g., the crater rim area in Fig. 1(a) and the margin area of the door
in Fig. 1(e)). Therefore, this paper presents an integrated point and
edge matching method constrained by self-adaptive triangulations
to improve the image matching performance on poor textural con-
ditions based on our previous work (Zhu et al., 2005, 2007a; Wu,
2006; Wu et al., 2011).

After giving a literature review on image matching methods for
poor textural images, an integrated point and edge matching meth-
od based on the self-adaptive triangle constraint is presented in
detail. The stereo pairs of poor textural images illustrated in
Fig. 1 are employed for experimental analysis and quantitative
evaluation of the developed method. And finally, concluding re-
marks are presented and discussed.
2. Related work

Reliable and automatic image matching is a challenging task,
especially for matching on poor textural images. One strategy is
to use some complex descriptors to match the interest points de-
tected on the images, of which SIFT (Scale Invariant Feature
Transform) is the most well-known method (Lowe, 1999). SIFT
combines a scale invariant interest point detector and a descrip-
tor generated from the gradient distribution in the detected local
regions. The SIFT method provides robustness against errors
caused by image distortions from scale or orientation changes.
However, it can only detect blob-like interest points and produce
relative sparse matching results (Mikolajczyk and Schmid, 2004;
Zhu et al., 2007b). Similar methods also include the SURF method
presented by Bay et al. (2008) and the DAISY method by Tola
et al. (2010). All these methods depend on complex descriptors
and even though they may not work for the poor textural image
sometimes.

Using redundant information (multiple images) to enhance im-
age matching on poor textural conditions is another strategy.
Zhang (2005) presented a multiple image matching method for
DEM (Digital Elevation Model) generation using three-view aerial
images. This method is based on a hypothesis that the surface con-
structed from the matched points should be relatively smooth in
object space. The commercial software of Match-T (Match-T
DSM, 2011) also provides functions of selecting stereo pairs to
run stereo image matching; then merges the result of several
matches to reduce the matching ambiguity by filtering them in
3D space. Seitz et al. (2006) performed a study to compare and
evaluate multi-view stereo reconstruction algorithms. They con-
cluded that matching with multiple images is useful for reducing
matching ambiguity resulting from occlusions, surface discontinu-
ities, and repetitive patterns or homogenous texture. However,
multiple images are not always available.

The third strategy introduces segment constraints (edges or
lines) into image matching. Tao et al. (2001) presented a match-
ing method for images that lack texture involving segment con-
straints, which is based on an assumption that the disparity or
depth in a segment shares the same plane fitting equation. This
method may be invalid for a non-planar scene. Edge features
are also helpful to model the surface discontinuity situations of-
ten seen on poor textural images. The Match-T software provides
tools to measure break lines before image matching, which will
then be used to constraint the subsequent image matching so
as to obtain precise surface reconstruction results. Zhang et al.
(2007) presents a hybrid image matching approach, which takes
the edges into consideration. Zhang and Gruen (2006) and Zhang
and Fraser (2009) employed line feature as matching primitives
and the matched lines are incorporated in the final DEM as
break-lines. However, the edge or line features in these methods
are only used as constraints. They are separated from the point
matching. Their potential contributions to the image matching
are not fully exploited.

The forth strategy to improve the matching reliability on poor
textural images is to make use of certain matching propagation
methods to inherit prior information from previous reliable
matching results to enhance the later matching process. The tra-
ditional hierarchical matching methods based on image pyramid
(Zhang and Gruen, 2006) or region growing methods (Otto and
Chau, 1989; Lhuillier and Quan, 2002) are good examples. Zhu
et al. (2005, 2007a, 2010) presented an image matching method
based on the self-adaptive triangulations. The triangulations are
dynamically updated along with the matching process by insert-
ing the newly matched points into the triangulations. The dy-
namic updating of triangulations is adaptive to the image
textures by propagating the matching from good textural areas
to difficult areas. However, the current method only takes ac-
count of interest point matching, while the important edge fea-
tures are not used. In previous work, the triangle constraint is
sometimes invalid when there are edges (usually related to sur-
face discontinuities) passing through the corresponding triangles,
especially when the triangles cover a large area. Incorporating
edge features in image matching is essential in these cases to fur-
ther improve the matching performance, especially for poor tex-
tural images.

Based on the previous research (Zhu et al., 2005, 2007a; Wu,
2006; Wu et al., 2011), this paper presents an integrated point
and edge matching method, which incorporates the edge matching
with point matching in the same dynamic matching propagation
process. This method takes advantage of the edge-constrained Del-
aunay triangulations with the capability of generating point and
edge matches preserving the actual textural features. This strategy
will be helpful to improve the image matching reliability, espe-
cially for poor textural images. The details are described in the fol-
lowing sections.
3. Integrated point and edge matching based on the self-
adaptive triangulations

3.1. Overview of the approach

For a stereo pair of images, the method begins by extracting
point and edge features on the images. A few seed points will
be matched first from the extracted feature points. A few seed
edges close to the successfully matched seed points will also be
matched. They together will be used to generate a pair of initial
edge-constrained corresponding triangulations on the stereo
images. Then, an integrated point and edge matching propagation
will be carried out, which includes two steps. The first is a feature
to feature matching process for all the extracted point and edge
features on the stereo images. The second step is a feature to area
matching process, which will match the remaining point and
edge features in one image after the first step with all the pixels
in another image. The newly matched corresponding points and
edges will be inserted into the triangulations and the triangula-
tions will be updated dynamically along with the matching prop-
agation. The final results will be the final edge-constrained
corresponding triangulations generated from the successfully
matched points and edges. The framework of the method is illus-
trated in Fig. 2.
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3.2. Point feature extraction and matching

3.2.1. Point feature extraction
There are two types of interest point detectors used in this

method. The first one is the SIFT for the purpose of selecting seed
points. The SIFT algorithm (Lowe, 1999) is proved to be able to pro-
duce robust but relative sparse corresponding points invariant to
moderate scale changes or distortions, which is ideal for the pur-
pose of generating a small number of seed points on the poor tex-
tual images.

However, as mentioned in Section 2, the SIFT method only re-
sponds to blob-like points (Mikolajczyk and Schmid, 2004) and
produces relative sparse corresponding points (Zhu et al., 2007b),
while interesting points in highly textured areas such as the cor-
ners of roads or building boundaries may not be able to be derived
by using SIFT method. This disadvantage limits its use in surface
reconstruction in photogrammetry since dense and reliable match-
ing results are critical for this task. Therefore, this paper uses an-
other detector to extract interest points for the rest of the image
matching, which is an improved Harris–Laplace method (Mikolajc-
zyk and Schmid, 2004; Zhu et al., 2007b). This improved Harris–
Laplace method responds to all types of interest points including
corners and highly textured points and is also invariant to image
scale and affine changes.
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Fig. 3. Flowchart of edge feature extraction and matching.
3.2.2. Seed point matching
The interesting points detected using the SIFT method are used

to match for a few seed points based on the SIFT descriptors. In the
SIFT descriptor, each interest point is characterized by a vector
with 128 unsigned eight-bit numbers generated from a local re-
gion, which defines the multi-scale gradient orientation histogram.
The matching is performed by measuring the similarity between
the two vectors associated with the two matching points (Lowe,
2004).

However, after the SIFT matching, mismatches may exist.
Therefore, a RANSAC (Fischler and Bolles, 1981) approach is used
to detect and remove possible mismatches from the previous SIFT
matching results. The RANSAC algorithm starts by randomly
selecting a portion of the matched corresponding points. A model
is then built based on the fundamental matrix determined from
the chosen matched points. This model is then used to determine
how much of the remaining corresponding points fit the model
by determining whether each pair of corresponding points fit rea-
sonably well to the model. This is used as a criterion to determine
the best model which has the largest number of correct corre-
sponding points. This process is repeated to find the overall best
model. Those matched points that do not fit for the final best mod-
el are considered as mismatches and removed from the seed
points. Details about using the SIFT method and RANSAC approach
to obtain a few robust seed points can be found in Wu et al. (2011).
3.2.3. Point matching based on the self-adaptive triangulations
Zhu et al. (2005, 2007a, 2010) presented an image matching

method based on the self-adaptive triangulations. At first, a few
pre-identified seed points are used to generate initial Delaunay tri-
angulations. Then, interest points detected within a pair of trian-
gles in the initial triangulations are matched under the triangle
constraint, epipolar constraint, and disparity constraint. A left–
right consistency check is incorporated in the matching process.
After a pair of corresponding points with maximum reliability is
obtained, they are inserted into the triangulations and the triangu-
lations are updated immediately. Then, the next pair of triangles
are handled, and the same process is repeated until the termina-
tion conditions (the triangles are small enough or cannot match
successfully for at least one pair of points) of the matching propa-
gation are met. As the most distinctive point is always successfully
matched first, the dynamic updating of triangulations is adaptive
to the image textures by propagating the matching from good tex-
tural areas to difficult areas. The geometry constraint of triangles
can adapt to the changes in image texture automatically and will
finally produce more reliable matching results. The same strategy
is extended here for point feature matching on poor textural
images by incorporating the edge-constrained triangulations. De-
tails about the point matching method based on the self-adaptive
triangulations can be found in Zhu et al. (2005, 2007a, 2010).
3.3. Edge feature extraction and matching

This section describes the edge extraction and matching meth-
ods. Fig. 3 outlines the steps for edge extraction and matching. De-
tails for each step are described in the following sections.
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3.3.1. Edge feature extraction
A well-known edge extraction method, EDSION (Meer and

Georgescu, 2001), is used to extract edge features from the stereo
images. Fig. 4(a) shows a zoomed view of the extracted edges in
the sand dune area on the HiRISE images of the Victoria crater on
Mars (Fig. 1(a)). The extracted edges are then regularized to edge
chains one-pixel wide. Before they can be used in the image
matching, they need to be split and approximated to short line seg-
ments. The following algorithm is employed for this purpose:

(1) For an extracted edge, link its two end-points to obtain a
line, and then calculate the maximum arc-to-chord devia-
tion of the edge from the line. The arc-to-chord deviation
is defined as the perpendicular distance of a point on the
edge to the line (d in Fig. 4(b));

(2) If d exceeds a pre-defined threshold, split the edge at that
point, and replace the original line with two new lines as
illustrated in Fig. 4(b). The threshold L(d) is defined by the
following equation as recommended by Zhang (2005):
Ld ¼
1:0þ Log1:0d d � 1:0
1:0 otherwise:

�
ð1Þ
O

l 1l
2l 3l

4l

5l

(a) Left Image (b) Right Image 

Fig. 5. Using triangle constraint to find matching candidates for edge matching.
(3) Repeat the previous two steps recursively for each segment,
until all the segments have arc-to-chord deviations small
enough. Then use the split lines to approximate the
extracted edges.

Fig. 4(c) shows the edge approximation results from Fig. 4(a).
Comparing these two figures, it is obvious that the approximated
lines can represent the actual terrain features.

3.3.2. Constraints for edge matching
In this method, the edge features are matched based on the fol-

lowing fundamental constraints.

(i) Triangle constraint

The triangle constraint for edge matching is based on the fol-
lowing assumption, that is to say, if a pair of edges is matched to
be a pair of corresponding edges then they should lie within the
corresponding triangles. For example, for a given edge l on the left
image as illustrated in Fig. 5(a), its middle point O will be firstly
identified. The triangle that contains O will then be identified.
Then, starting from this triangle, a triangle list that contains the
edge l will be tracked by searching the adjacent triangles. After
that, their corresponding triangles on the right image will be iden-
tified, and all the edges having intersections with these triangles
on the right image will be selected as matching candidates for
the edge on the left image. As shown in Fig. 5(b), there are five
edges (l1, l2, l3, l4, and l5) selected as matching candidates for the
edge l on the left image. This triangle constraint is helpful to reduce
the search area of finding candidate matches and to improve the
matching performance.

(ii) Edge orientation constraint

For stereo images with general perspective changes (the view-
points for the two images are not significantly different), the orien-
tations of the corresponding edges in local areas should be
relatively consistent. Therefore, a loose constraint based on the
edge orientations is employed in this method. That is to say, if
the orientation difference between the matching edge and the can-
didate is larger than a pre-defined threshold (30� recommended in
this paper based on experimental analysis using regular satellite,
aerial, and terrestrial images), this candidate will be excluded.
For example, edge l5 in Fig. 5(b) will be excluded from the match-
ing candidates for the edge l in Fig. 5(a) by applying the edge
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orientation constraint. This edge orientation constraint can simply
remove some obviously wrong candidates for edge matching.

(iii) Brightness contrast constraint

Simple statistics of the brightness contrast in a local buffering re-
gion along both sides of the matching edges can be used to further
disambiguate the edge matching. Assuming the equation expression
for an edge is Axþ Byþ C ¼ 0, for a local buffering region (11 pixels
width used in this paper) centered at the edge, the average intensity
on one side Axþ Byþ C < 0 of the edge is I1, and the average inten-
sity for the other side Axþ Byþ C > 0 of the edge is I2. A brightness
contrast attribute AI for each edge is assigned as:
�

AI ¼

�1 I1 � I2 � 0
1 otherwise:

ð2Þ

Comparing the brightness contrast attributes of two matching
edges, if they are equal then the two edges are considered as a pos-
sible match candidate, otherwise the candidate edge is excluded
for further matching process.

(iv) Epipolar constraint

If a pair of matching edges satisfies all the above constraints,
then the epipolar constraint will be used to find out the corre-
sponding overlap segments between the two edges. For example,
for a pair of matching edges AC and BD in Fig. 6(a and b), the epi-
polar lines of the end points of AC and BD can be derived as illus-
trated using dashed lines in Fig. 6. By intersecting these epipolar
lines with the edges AC and BD, the overlap segments between
these two edges can be obtained, which is B0C and BC0.

Epipolar constraint works quite well for edges with large inter-
section angles with the epipolar lines. However, the intersection
angles between the edges and the epipolar lines are sometimes
small, which will bring ambiguities in determining the overlap seg-
ments. Especially when the edges to be matched are parallel to the
epipolar lines, it is not possible to estimate the overlap segments
between the edges. Therefore, this paper only uses this epipolar
constraint to determine the overlap segments for the edges with
intersection angles larger than a pre-defined threshold (30� used
in the paper based on experimental analysis using regular satellite,
aerial, and terrestrial images) between them and the epipolar lines.
For those edges with intersection angles less than the threshold, an
edge to area matching strategy will be employed and details will
be discussed in Section 3.4.2.
(a) Left image 

A 

C 

B’ 
B

D

C’

(b) Right image 

Fig. 6. Using epipolar constraint to find corresponding overlap segments for edge
matching.
3.3.3. A Shiftable Self-adaptive Line Cross Correlation (SSLCC)
After edge matching candidates are selected and their overlap

segments determined the next task is to measure the similarities
between the edges to be matched. There have been several similar-
ity descriptors presented for edge matching in the past decades,
such as the Line Cross Correlation (LCC) based on the philosophy
of Normalized Cross Correlation (NCC) for point matching (Schmid
and Zisserman, 2000). LCC is determined by calculating the average
of the NCCs for all the discrete pixels on the edges. Liu (2004) pre-
sented a Normalized Line Cross Correlation (NLCC) for edge match-
ing, which uses a window with fixed size centered at the edges to
calculate a window based NCC for the whole edge. Jiang (2004)
developed a half-plane correlation method for edge matching,
which only uses half of the window along one side of the edge to
determine the correlation. This method is helpful to match the
edges in occlusion textural areas where surface discontinuities
may exist. However, it will reduce the distinctiveness of edge
matching in other textural areas.

When using cross correlation to measure the similarity between
the corresponding edges on the stereo images, the key issue is to
select an appropriate window to calculate the correlations. The
term ‘‘Appropriate’’ indicates the appropriate location, size, and
shape of the correlation window. For interesting point matching,
Kanade and Okutomi (1994) presented an adaptive cross-correla-
tion method to select the appropriate correlation window size for
image matching, which is an iterative process to extend the corre-
lation window step by step toward the left, right, up, and down
directions until the correlation values stop increasing. This method
provides more accurate correlation windows and is ideal for point
matching on images suffering from distortion or surface disconti-
nuity problems. Bobick and Intille (1998) presented a cross-corre-
lation method with a shiftable window to improve point matching
performance on occlusion areas with surface discontinuity prob-
lems. Inspired from the discussed previous research, this paper
presents a Shiftable Self-adaptive Line Cross Correlation (SSLCC)
method for edge matching on poor textural images.

The SSLCC works in two steps. The first step is to use a shiftable
window with fixed size (a width of 11 pixels used in this paper) to
obtain an appropriate location for the correlation window. As illus-
trated in Fig. 7(a), for a pair of edges l and l0 to be matched, a cor-
relation window is moved starting from the left side of the edge to
the right side along a direction perpendicular to the edge. A series
of NLCC correlation values are calculated, and the window location
with the highest correlation value is selected as the appropriate
location of the correlation window. After the location of the corre-
lation window is determined, the second step is to expand the win-
dow (with a step of 2 pixels) to the left or right side of the edge as
illustrated in Fig. 7(b). The expansion will be stopped when the
correlation values start to decrease. It should be noted that, if the
window is just located on one side of the edge from the first step,
then the window expansion is only needed in this side. After the
window shift and expansion, the correlation value from the win-
dows will be calculated, which is the SSLCC in this method. The va-
lue of SSLCC will range from �1 to 1. To determine whether a pair
of edges is a potential match, the SSLCC should be larger than a
pre-defined threshold. A higher threshold can lead to more accu-
rate results but the numbers of the matched results will be less.
Taking into account of the balance between the matched numbers
and the matching accuracy, a threshold of 0.8 is used in the exper-
iments reported in this paper.

3.3.4. Expanding of matched edges
For those matched edges which are not exactly the same length,

which means one part of the edge extracted in one image is not
successfully extracted in the other image, an edge expanding pro-
cess is performed to obtain an edge pair with consistent lengths. As



Right ImageLeft Image

(a) Window shift 

l l ′

Right ImageLeft Image

(b) Window expansion 

l l ′

Fig. 7. Illustration of the Shiftable Self-adaptive Line Cross Correlation.
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illustrated in Fig. 8(a), the overlap segments of two edges l (AC) and
l0 (BD) in a stereo pair is B0C and BC0. They can be identified by the
intersection of the edge and the epipolar line of the end point in
the other edge. For segment AB0 on edge l in the left image, its cor-
responding segment on edge l0 in the right image is not successfully
extracted. Similarly, segment C0D on edge l0 in the right image does
not have its corresponding segment detected on edge l in the left
image. The following edge expansion process is performed in both
directions along with the edge pixel by pixel.

For the pixels beyond the overlap segments in the matching
edges (e.g., P on the segment AB0 of edge l in the left image), the
edge expanding algorithm tries to find its corresponding pixels
on the other image so that to extend the corresponding edge.
The edge expanding procedure starts from the end pixels of the
overlap segments (e.g., B0 for the segment AB0) and moves towards
the end of the edge (e.g., A for the edge AC) pixel by pixel. As illus-
trated in Fig. 8(a), for a pixel P on segment AB0 of edge l in the left
image, its corresponding epipolar line e on the right image can be
derived. The intersection point of the epipolar line e and the edge l0

in the right image is P0, which is supposed to be the corresponding
point of P. The NCC value between P and P0 is calculated, and if the
value is larger than a pre-defined threshold (e.g., 0.8), the matching
D

(a) Extracted edges on the HiRISE stereo pair 

(c) Matched overlap segments 

Right image Left image 

e
A

B

C

'A

'B

'C

'D

l 'l

P 'P

Fig. 8. Illustration of
is accepted and the edge matching is expanded to P and P0; other-
wise, the edge expansion process is stopped. Edge expansion in an-
other direction is performed in the same way.

Fig. 8(b) shows a zoomed view of the edges extracted along the
rim of Victoria crater in the HiRISE images. As can be seen, the ex-
tracted edges do not overlapped ideally. The symbols of the end
points on the edges show the same meaning as the symbols in
Fig. 8(a). Fig. 8(c) is the matching results based on the matching
constraints and SSLCC. As can be seen from Fig. 8(c), only the over-
lap segments have been matched. After the edge expansion pro-
cess, the matched edges have been extended as shown in
Fig. 8(d), and they are visually accurate.
3.3.5. Seed edge matching
Before the integrated point and edge matching propagation, a

few seed edges are matched based on the seed points already ob-
tained previously. The seed edge matching uses the prior informa-
tion from the seed points and uses the triangle constraint, edge
orientation constraint, brightness contrast constraint, and epipolar
constraint. It should be noted that, the edges with intersection
angles less than 30� between them and the epipolar lines are
(b) Extracted edges on the HiRISE stereo pair 

(d) Results from edge expansion 

edge expansion.
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excluded for seed edge matching. The seed edge matching algo-
rithm works as in the following steps:

(1) Select a seed point from the seed list and pick out several
edges close to the selected seed point as seed edge candi-
dates on the stereo images;

(2) For each edge selected in the previous step in the left image,
select the corresponding edges in the right image as match-
ing candidates based on the triangle constraint, and then use
the edge orientation constraint and brightness contrast con-
straint to exclude wrong candidates;

(3) For the remaining candidates, use the epipolar constraint to
obtain the overlap segments for each pair of the matches;

(4) Calculate the SSLCC for every pair of the matches, and
choose the one with maximum SSLCC and the SSLCC also lar-
ger than 0.8 as the matching hypothesis;
Fig. 9. Examples of stereo images with
(5) Carry out a ‘‘right to left’’ matching consistence check, if the
bidirectional matching result is consistent, then the match-
ing hypothesis is accepted as a successful match and edge
expansion is employed, otherwise, reject the matching
hypothesis;

(6) Turn to step 2 to process the next unmatched edge until all
the selected edges associated with that seed point are
processed;

(7) Turn to step 1 to process the next seed point until all the
seed points are processed.

After a few seed edges are matched, all the seed edges and seed
points are together used to generate a pair of initial edge-con-
strained Delaunay triangulations, which will be used to support
the subsequent point and edge matching propagation.
poor textures for image matching.



Initial edge-constrained triangulations 

Triangle list sorted by the FS of triangles 

Select an un-processed triangle with the highest FS in the triangle list 

Select an un-processed feature with the highest FS in the triangle 

Edge matching Point matching 

Insert the newly matched feature into the triangulations 

Final edge-constrained triangulations 

Whether it is a successful
match?

Y

Y 

N 

Whether all the triangles
in the list processed? 

Update the triangle list 

Whether it is a 
point feature? N 

Y

N

Fig. 10. Flowchart of the integrated point and edge matching propagation
algorithm.
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3.3.6. Evaluation of the triangle constrained edge matching method
To examine the performance of the triangle constrained edge

matching method, the third stereo pair in Fig. 1 is used for exper-
imental analysis since there are plenty of edges with regular
shapes available on the images as can be seen in Fig. 1(e and f). An-
other classical edge matching method presented by Schmid and
Zisserman (2000) is employed for comparison analysis. Schmid
and Zisserman’s method matches edges based on the epipolar con-
straint and the Line Cross Correlation (LCC). For the triangle con-
strained edge matching method, a pair of triangulations
constructed from 23 seed points is used to constrain the edge
matching. Point matching is not included in this experiment for
comparison analysis. The results are shown in Fig. 9.

The EDSION algorithm is used to extract edges on the stereo
images. Only those edges with lengths larger than 50 pixels are
used for better experimental analysis. 722 edges on the left image
and 781 edges on the right image are finally used and they are
shown in Fig. 9(a and b), respectively. Using Schmid and Zisser-
man’s method, 465 edges are matched as shown in Fig. 9(c and
d), in which correct matches are 314 based on a manual check pro-
cess. This indicates a matching accuracy of 67.5%. Fig. 9(d and f)
show the matching results from the triangle constrained edge
matching method presented in this paper. There are 588 edges
matched and 580 are correct matches after manual checking,
which indicates a matching accuracy of 98.6%. The eight mis-
matches mainly happened in the large triangles. By incorporating
point matching in an integrated point and edge matching process,
the triangulations will be quickly densified along with the match-
ing propagation, which will provide stronger constraints for edge
matching and further improve the edge matching accuracy. Details
about the integrated point and edge matching propagation are dis-
cussed in the next section.

3.4. Integrated point and edge matching propagation

In image matching, the matching primitives with the most dis-
tinctiveness are usually the easiest to be matched and the match-
ing is usually also reliable (Zhu et al., 2007b). On poor textural
images, the distinctive features (either feature points or edges)
are especially important and valuable for image matching. This tri-
angulation based matching method exploits the prior information
from these features by constructing triangulations based on them,
and then use the triangulations to constrain the image matching. In
this method, image matching always occurs in the areas with good
textural conditions first, and then propagates the matching to the
other poor textural areas by densifying the triangulations. The fea-
ture strength associated with the triangles and feature points or
edges are employed to manipulate the matching propagation.

Feature strength (FS) is defined based on the distinctiveness of
the features. For point features the Harris–Laplace interest
strengths (Harris and Stephens, 1988; Zhu et al., 2007b) calculated
through the response formulation in the point detecting process
are used as FS. For edge features, the long edges are considered
to be more distinctive than the short ones, and intuitively match-
ing on long edges is supposed to be more stable than matching
on short ones. Therefore, this paper uses the length of the edges
to represent their distinctiveness. In order to manage the point
and edge matching in an integrated structure, the length of the
edges are normalized to a range between the maximum strength
and minimum strength of the point features through a linear meth-
od. The normalized lengths are used as the FS for the edges, which
are comparable to the FS of the point features. In addition to the
point and edges, each triangle in the triangulations has also been
assigned a FS, which is the average of the FS of its three vertices.

The integrated point and edge matching propagation starts
from the initial edge-constrained triangulations generated from
the seed points and edges. It follows the basic principles of the
self-adaptive matching propagation strategy for interesting point
matching as presented in Zhu et al. (2007a), but combines the edge
matching in the matching propagation process and incorporates a
‘‘feature to area’’ matching process after the ‘‘feature to feature’’
matching. The flowchart of the integrated point and edge matching
propagation algorithm is illustrated in Fig. 10, and the details of the
‘‘feature to feature’’ and ‘‘feature to area’’ matching process are de-
scribed in the following sections.

3.4.1. Feature to feature matching propagation
The feature to feature matching propagation includes both fea-

ture point and edge matching on both the stereo images. For edge
matching, if the middle point of an edge is located within a trian-
gle, then this edge is considered to be inside this specific triangle.
The feature to feature matching propagation is described in Fig. 10.
It mainly includes the following steps:

(1) Select the left image as the reference image and the right
image as the searching image. Calculate the FS for each tri-
angle in the initial triangulations, and generate a triangle list
by sorting the FS of the triangles on the reference image;

(2) Select a triangle from the triangle list with the highest FS to
process if it has not been processed yet, and obtain all the
feature points and edges inside the triangle;

(3) Select an unmatched feature with the highest FS inside the
triangle; if it is a point feature, then go to step 4; if it is an
edge feature, then go to step 5;

(4) Match the point feature under the constraint of triangula-
tions (Zhu et al., 2007a), if it is a successful matching, then
go to step 6; otherwise go to step 3;
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(5) For the edge to be matched in the reference image, use the
triangle constraint, edge orientation constraint, and bright-
ness contrast constraint to exclude wrong candidates in
the searching image. For the remaining candidates, use the
epipolar constraint to obtain the overlap segments for each
pair of the matches. Then, calculate the SSLCC for every pair
of the matches, and choose the one with maximum SSLCC
and the SSLCC also larger than a predefined threshold (e.g.,
0.8) as the matching hypothesis. After that, carry out a ‘‘right
to left’’ matching consistence check, if the bidirectional
matching result is consistent, the matching hypothesis is
accepted and an edge expansion process is employed, then
go to step 6; otherwise, the matching hypothesis is rejected
and go to step 3;

(6) Insert the newly matched point or edge into the triangula-
tions and update the triangle list, then turn to sept 2;

(7) If all the triangles are processed, the matching propagation is
terminated.

In this feature to feature matching propagation process, the
most significant feature points and edges will be matched first.
Along with the matching propagation, the image will be seg-
mented into smaller local regions by the previous matched points
and edges, and the remaining feature points and edges with less
significance in the separated local regions can then be matched
with less difficulty. It should be noted that, only those edges with
intersection angles larger than 30� between them and the epipolar
lines will be processed in this feature to feature matching propaga-
tion step. The rest of the edges will be processed in the later feature
to area matching propagation step.
3.4.2. Feature to area matching propagation
Due to the textural differences on the stereo images and the

limitations of the feature detection methods, for the features de-
tected in one image, not all their corresponding features can be de-
tected in the other image. Also for edge matching particularly,
those edges with intersection angles less than 30� between them
and the epipolar lines are not considered in the previous steps.
Therefore, this paper introduces a feature to area matching process
Fig. 11. Illustration of edge to area m
to take care of the matching of the rest of the features that have not
been successfully matched before. The major steps of feature to
area matching propagation are similar to those described in
Fig. 10, except that the matching has been changed from ‘‘point
to point’’ and ‘‘edge to edge’’ to ‘‘point to area’’ and ‘‘edge to area’’,
respectively.

Feature to area matching propagation starts from the edge-
constrained triangulations derived from the previous feature to
feature matching results. The image with more remaining features
will be selected as the reference image, and the other one will be
the searching image. For a given point in the reference image, all
the pixels along the epipolar line inside the corresponding triangle
in the searching image are treated as matching candidates. For all
the candidates, matching scores are calculated and a score curve is
then obtained. If the ratio of the highest matching score to the sec-
ond highest matching score is larger than a predefined threshold
(e.g., 1.25) and the highest matching score is larger than a thresh-
old (e.g., 0.8), the correspondence is considered to be a matching
hypothesis. If the hypothesis passes the double-direction consis-
tency check, the correspondence is accepted as a correct match.
Since the triangulations used here are already dense, they provide
strong constraints to the point to area matching. Details about
point to area matching based on the self-adaptive triangulations
can be found in Wu et al. (2011).

For the remaining edges on the reference image, an edge to area
matching method is developed as follows. First, the edge is divided
into individual pixels. Then all the discrete pixels on the edge are
treated as points, and their corresponding points in the searching
image are obtained using the same method of point to area match-
ing. After that, a RANSAC approach is employed to exclude possible
mismatches and fit a new edge in the searching image. The RAN-
SAC approach used here is based on the following assumption.
For all the pixels on the edge, their disparities should satisfy a lin-
ear relationship to each other. The disparities of the pixels on an
edge can be modeled by a linear function, which is used to build
the model in the RANSAC approach. After the RANSAC process,
the mismatches are removed, and the remaining matched pixels
are fitted to an edge. If the fitted edge passes the edge orientation
constraint and the brightness contrast constraint, and their SSLCC
atching in the HiRISE stereo pair.



Fig. 12. Final triangulations from different matching strategy in the sand dune area of Victoria crater on the HiRISE image.
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is larger than 0.8, then the fitted edge is accepted as a correct
match.

Fig. 11 shows an example of edge to area matching along the
rim of Victoria cater in the HiRISE stereo pair. The edge extracted
in the left image has an intersection angle less than 30� with the
epipolar line. After matching the individual pixels on the edge to
the right image, 36 matched pixels have been obtained as shown
as crosses in Fig. 11, in which two of them labeled with thick blue
are classified as outliers after the RANSAC process. Then all the
remaining matched pixels are fitted to an edge, which turns out
to finally be the correct match of the edge in the left image.

After the integrated point and edge matching propagation, the
output is the final edge-constrained triangulation. Fig. 12 shows
examples in the sand dune area of Victoria crater on the HiRISE
images. Fig. 12(a) is the result only using points as matching prim-
itives and Fig. 12(b) is the result from the integrated point and
edge matching. From the results, it can be seen clearly that the la-
ter produce more matched features and the final triangulation is
more adaptive to the natural terrain textures, especially in the re-
gions marked with rectangles.
4. Further experimental analysis

The three typical stereo pairs with poor textures as illustrated in
Fig. 1 have been used to quantitatively evaluate the performance of
the developed method. The results from the integrated point and
edge matching method based on the self-adaptive triangle
Fig. 13. DEM co
constraint (named as ‘‘integrated point and edge matching’’)
are compared with the results from the other two methods.
One is the method only using points as matching primitives also
based on the self-adaptive triangle constraint (Zhu et al., 2007a)
named as ‘‘point matching’’. The other is the traditional image
matching method based on the Normalized Cross Correlation
(Lhuillier and Quan, 2002) under the epipolar constraint named
as ‘‘NCC’’.

In order to quantitatively evaluate the performance of the im-
age matching methods, the 3D coordinates of the matched results
are calculated based on the image internal orientation (IO) and
external orientation (EO) parameters. They are then compared
with certain reference data (e.g., digital elevation data derived
from digital photogrammetric systems or laser scanning, or ran-
domly selected checkpoints with known coordinates). Their height
differences are computed and their statistics of RMSE (root mean
squared error) and maximum values are obtained, which are used
as indicators of the performance of image matching.

4.1. Experiments using the HiRISE stereo pair

The integrated point and edge matching method, the point
matching method, and the NCC method have been used to process
the HiRISE stereo images as illustrated in Fig. 1(a and b). The basic
matching criteria for these three methods are set to be the same,
for example, the thresholds of the cross-correlation coefficients
to be considered as a potential match are 0.8 for all the three meth-
ods, and the termination conditions of the triangle constrained
mparison.
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matching propagation for the previous two methods are the same.
Finally, three sets of matching results are obtained, and they are
used in the subsequent quantitative comparison.

The US Geological Survey (USGS) has processed the HiRISE ste-
reo pair at Victoria crater on Mars using their in-house digital car-
tographic software ISIS and the commercial photogrammetric
software SOCET SET for DEM production (Kirk et al., 2007). Kirk
et al. (2007) also mentioned that intensive interactive editing
was performed to produce a 1 m resolution DEM when using the
software systems due to the extremely unfavorable image textural
conditions. The DEM was downloaded from the Mars HiRISE DEM
archives in NASA’s Planetary Data System (PDS) (http://
hirise.lpl.arizona.edu/dtm/, accessed on November 11, 2010) and
is illustrated in Fig. 13(a). It has been used as a reference for com-
parison analysis in this paper.

Thirty two control points (feature points) are manually identi-
fied from the HiRISE stereo images. Their 3D coordinates are also
obtained from the DEM generated by USGS. These control points
are evenly distributed in the crater rim, wall, and bottom areas.
They are used to build a transformation relationship between the
image space and the objet space using the 3D DLT (Direct Linear
Transformation) method (Hatze, 1988), in which eight control
points are used to calculate the initial 16 DLT parameters (includ-
ing 11 standard DLT parameters and five optical distortion terms)
and the rest of the control points are used to refine the parameters
through a least-square approach. Using the calculated DLT param-
eters, the 3D coordinates of the matched points/edges from the
three matching methods are obtained, from which DEMs with
1 m resolutions are interpolated. Fig. 13(b) shows the 3D view of
the DEM directly derived from the integrated point and edge
matching method without any manual editing.

From Fig. 13, it can be seen that the topography derived from
the integrated point and edge matching method is consistent with
the USGS DEM in general. To quantitatively evaluate the image
matching results, all the derived 3D points (including the start
and end pixels for the matched edges) from the three matching
methods are used as check points and their elevations are com-
pared to the corresponding elevation values directly interpolated
from the USGS DEM. The RMSE and maximum value of the eleva-
Table 1
Experimental result using the HiRISE stereo pair.

Image matching
method

Number of matched
points or edges

Maximum
difference (m)

RMSE
(m)

NCC Points: 18,189 281.59 17.16
Point matching Points: 11,920 29.80 1.27
Integrated point and

edge matching
Points: 40,657;
edges:1533

29.14 0.99

Fig. 14. Differences between the USGS DEM and the DEMs
tion difference are calculated as indicators of the performance of
image matching. The detailed comparison results are listed in
Table 1.

From Table 1, it can be seen that the integrated point and edge
matching method produces the best results. Comparing the RMSE
results of the three methods, NCC produces the largest RMSE of
17.16 m, which may be caused by the possible mistakes in the im-
age matching on the poor textural images. While the RMSE results
for the other two methods are significantly improved. The RMSE
from the integrated point and edge matching method is better than
the RMSE from the point matching method, and the number of the
successfully matched points significantly increased from 11,920 to
40,657 after incorporating the edge matching. In addition 1533
edges have been successfully matched.

To have a detailed comparison analysis, three difference DEMs
are derived by subtracting the USGS DEM from the DEMs gener-
ated from the three image matching methods. They are shown in
Fig. 14. It should be noted that different color scales are used for
the difference DEMs. Statistics including maximum and minimum
differences, and the mean as well as the standard deviation of the
differences are calculated. For the difference DEM derived from the
NCC method, the maximum, minimum, mean, and standard devia-
tion of the differences are 192.13 m, �393.35 m, �2.45 m, and
6.97 m, respectively. For the difference DEM derived from the point
matching method, the maximum, minimum, mean, and standard
deviation of the differences are 11.20 m, �17.07 m, �2.84 m, and
2.60 m, respectively. For the difference DEM derived from the inte-
grated point and edge matching method, the maximum, minimum,
mean, and standard deviation of the differences are 7.60 m,
�17.04 m, �2.12 m, and 2.48 m, respectively. The statistics show
that the integrated point and edge matching method produces
the best results.
4.2. Experiment using the aerial stereo pair in highland area in
Lanzhou, China

The aerial stereo images acquired in the highland area in Lanz-
hou, China as shown in Fig. 1(c and d) have also been used in
experimental analysis. Fig. 15 shows the image matching results.

There are 6297 and 6396 edges extracted from the left image
and right image of the aerial stereo images, respectively. And final-
ly, 4999 edges are successfully matched from the integrated point
and edge matching method, which are shown in Fig. 15(a and b).
From Fig. 15(a and b), it is encouraging that the matched edges
can generally represent the layer structure of the highland area.
Fig. 15(c and d) is the zoomed view of a local region as marked
with rectangles in Fig. 15(a and b) showing the final triangulations
from point matching and integrated point and edge matching,
respectively. It can be found that, if only using point matching,
generated from the different image matching methods.

http://hirise.lpl.arizona.edu/dtm/
http://hirise.lpl.arizona.edu/dtm/


Fig. 15. Matching results from the aerial stereo images acquired in the highland area in Lanzhou, China.

Fig. 16. Generated DEM and the line used for profile comparison analysis.
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Table 2
Experimental result using the aerial stereo pair.

Image matching method Number of
matched
points or edges

Maximum
difference
(m)

RMSE
(m)

NCC Points: 21,607 49.43 14.73
Point matching Points: 25,646 13.84 3.09
Integrated point and edge matching Points: 68,061;

edges: 4999
9.43 2.20

Fig. 17. Profile comparison of the image matching methods.
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some edge features cannot be successfully matched and the final
triangles may cross edges which they should not, such as those re-
gions marked with rectangles in Fig. 15(c and d).

To quantitatively evaluate the performances of the three image
matching methods, three DEMs are generated using the matched
results from the three methods, respectively. The image internal
orientation (IO) and external orientation (EO) parameters are pro-
vided for DEM generation. Fig. 16(a) shows the DEM generated
from the integrated point and edge matching results. Since no
ground truth data is available for this study area, 268 points are
manually measured by using a commercial photogrammetric soft-
ware system, VirtuoZo Digital Photogrammetry Workstation. They
are evenly distributed in the image area. They are used as check
points and their elevations are compared to the corresponding ele-
vation values directly interpolated from the DEM. The detailed
comparison results are listed in Table 2. From Table 2, it can be
seen that the integrated point and edge matching method pro-
duces the best results. Similar trends with the previous experi-
ments using the HiRISE stereo images can be found for the RMSE
results and the numbers of the successfully matched points or
edges. It should be noted that the relatively large RMSE results in
Fig. 18. Matching results from th
this experiment may be caused by the possible systematic errors
in the manually identified check points when using the commer-
cial software. But this does not affect the overall assessment of
the three image matching methods.

To better understand the performance of different image
matching methods using this data set, a line is drawn in the image
which covers the regions with significant elevation variations as
shown in Fig. 16(b). Refereeing to this line different profiles are de-
rived as shown in Fig. 17, in which the red solid line represents the
profile directly measured from the VirtuoZo Workstation, the red
dash line indicates the profile derived from the DEM interpolated
from the matched results of the integrated point and edge match-
ing method, the solid blue line is derived from the DEM based on
the point matching results, and the dash blue line is obtained from
the DEM based on the matched results of the NCC method. From
the profiles, it can be noticed that the one derived from the
e stereo terrestrial images.



Fig. 19. Generated shaded relief image and the associated LiDAR data for the experiments using the stereo terrestrial images.

Table 3
Experimental result using the aerial stereo pair.

Image matching
method

Number of matched
points or edges

Maximum
difference (m)

RMSE
(m)

NCC Points: 21,494 18.56 1.89
Point matching Points: 11,392 12.87 0.35
Integrated point and

edge matching
Points: 51,246;
edges: 2919

12.86 0.31
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integrated point and edge matching method is closest to the profile
directly measured from the VirtuoZo Workstation. In the area la-
beled as 1, only the profile from the integrated point and edge
matching method shows reasonable results. For the area labeled
as 2, the profile from NCC shows obvious errors.

4.3. Experiment using the stereo pair of terrestrial building images

The stereo terrestrial images shown in Fig. 1(e and f) were
downloaded from the Computer Vision Laboratory of EPFL in Swit-
zerland (Strecha et al., 2008) (http://cvlab.epfl.ch/~strecha/multi-
view/denseMVS.html, accessed on December 11, 2010). The
image IO and EO parameters are provided, and the downloaded
data sets also include the LiDAR point cloud data associated with
the image scene which will be used as ground truth in the exper-
imental analysis. Fig. 18 shows the image matching results.

There are 7676 and 6765 edges extracted from the left image
and right image of the stereo terrestrial images, respectively. And
finally, 2919 edges are successfully matched from the integrated
point and edge matching method, which are shown in Fig. 18(a
and b). From Fig. 18(a and b), it can be seen that the matched edges
cover almost all the inter-edges of the brick structure of the build-
ing wall. Fig. 18(c and d) is the zoomed view of a local region as
marked with rectangles in Fig. 18(a and b) showing the final trian-
gulations from point matching and integrated point and edge
matching, respectively. It can be found that, if only using point
matching, some triangles have anomalous shapes that may be
caused by mistakes in the point matching and some edge features
cannot be successfully matched, such as those regions marked with
rectangles in Fig. 18(c and d).

To quantitatively evaluate the performances of the three image
matching methods, 3D points are derived based on the matching
results using the provided image IO and EO parameters.
Fig. 19(a) shows the shaded relief image of the 3D points derived
from the integrated point and edge matching results. The down-
loaded LiDAR point cloud data is illustrated in Fig. 19(b). The LIDAR
data are well aligned with the images already so that it can be used
as ground truth for comparison analysis (Strecha et al., 2008). To
compare the 3D points derived from the stereo images with the Li-
DAR data, the LiDAR points are firstly back-projected onto the im-
age pairs using the IO and EO parameters of the images, and those
LiDAR points whose back-projected points overlapped with the
matched points from the stereo images are selected as check points
for further comparison. The overlap areas cover all the matched re-
sults for the three image matching methods. The detailed compar-
ison results are listed in Table 3.

From Table 3, it can be seen that the experimental results are
consistent with the results from previous experiments. The inte-
grated point and edge matching method produces the best results.
Similar trends with previous experiments can be found for the
RMSE results and the numbers of the successfully matched points
or edges.
5. Conclusions and discussion

This paper presented a feature-preserving image matching
method for reliable image matching on poor textural images by
integrating point and edge matching in the same matching propa-
gation process based on the self-adaptive edge-constrained trian-
gulations. The experiment analyses using typical space-borne,
airborne, and terrestrial images with poor textures conveyed the
following conclusions:

(1) Edge matching is very valuable for image matching on poor
textural images since the edge matching process is also an
image segmentation process, which is helpful to reduce
matching ambiguity in poor textural conditions;

(2) In the integrated point and edge matching method, edge
matching, and point matching are performed in the same
matching propagation process based on the edge-con-
strained triangulations, in which the real-time results from
edge matching are used to support the point matching and
vice versa. As a result, dense and reliable matching results
can be obtained, which is hard to achieve when only using
point matching method;

(3) From the final matched points and edges, 3D points and
edges preserving the physical boundaries of objects can be
further derived based on photogrammetric techniques. They
are ideal data sets for further object modeling applications.

It is very valuable to exploit the available edge feature informa-
tion to support reliable image matching, especially on images with
poor textural conditions. The experimental results reported in this
paper are promising. Future research will analyze the characteris-
tics of different poor textural situations and use a texture measure
to characterize the poor texture so that a better understanding of
the performance of the developed method can be obtained under
different textural conditions. Future efforts will also include the
effectiveness of the developed method on other extremely difficult
matching cases, such as matching on the images in metropolitan
areas where tall buildings are densely located, which leads to se-
vere occlusion problems. Tests over areas by a larger number of
images are also of interest.

http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
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